References

AuthorArticleYear
Xavier RoulleauAn atlas of $K3$ surfaces with finite automorphism group2020
Xavier RoulleauOn the geometry of $K3$ surfaces with finite automorphism group and no elliptic fibrations2019
Ichiro ShimadaAn algorithm to compute automorphism groups of $K3$ surfaces and an application to singular $K3$ surfaces2013
Ichiro ShimadaProjective models of the supersingular $K3$ surface
with Artin invariant $1$ in characteristic $5$
2012
Shigeyuki KondōThe automorphism group of a generic
Jacobian Kummer surface
*
1998
David R. MorrisonLectures delivered at the Scuola Mathematica Interuniversitaria, Cortona, Italy, July 31 – August 27, 19881988
Joachim Wehler$K3$-surfaces with Picard number 21988
Arthur Baragar Orbits of curves on certain $K3$ surfaces2003
Arthur BaragarAutomorphisms of surfaces in a class
of Wehler $K3$ surfaces with Picard number $4$
2016
Hervé BillardPropriétés arithmétiques d’une famille de surfaces $K3$ **1997
E. B. VindbergSome arithmetic discrete groups in Lobachevskii spaces1967
Richard BorcherdsAutomorphim groups of Lorentzian lattices1987
Richard BorcherdsCoxeter groups, Lorentzian lattices, and $K3$ surfaces1998
Hans SterkFiniteness results for algebraic $K3$ surfaces1985
Pierre Lairez and
Emre Can Sertöz
A Numerical Transcendental Method in Algebraic Geometry : Computation of Picard Groups and Related Invariants2019
Daniel HuybrechtsLectures on $K3$ surfaces2015
Piatetski-Shapiro,  ShafarevichTorelli’s theorem for algebraic surfaces of type $K3$1971
Giacomo MezzedimiElliptic $K3$ surfaces and their moduli :
Dynamics, Geometry and Arithmetic
2021
Olivier DebarreSurfaces $K3$ – Graduate course on $K3$ surfaces2019
Curtis T. McMullen$K3$ surfaces, entropy and glue2009
Bernard Saint-DonatProjective Models of $K$-$3$ Surfaces1974
Michael H. MertensAutomorphism groups of hyperbolic lattices 2013
Kwangwoo Lee$K3$ surfaces with Picard number two2022

* The first ever application of the Borcherds’ method to K3 surfaces
is due to Prof. Kondō in this 1998 article.
** Hard to find PDF file… We therefore uploaded it here, in the fair use context of this thesis.